From:	Dominika Phillips
To:	Hornsea Project Three; KJ Johansson; Kay Sully
Cc:	Andrew Guyton; Stuart Livesey
Subject:	Hornsea Project Three (UK) Ltd response to Deadline 4 (Part 6)
Date:	15 January 2019 23:04:00
Attachments:	image001.png
	D4 HOW03 Appendix 19 Lawson et al 2016.pdf
	D4 HOW03 Appendix 20 Masden 2015.pdf
	D4 HOW03 Appendix 21 Wade et al 2016.pdf
	D4 HOW03 Appendix 22 Desholm 2005.pdf
	D4 HOW03 Appendix 23 Welcker et al 2016.pdf
	D4 HOW03 Appendix 24 Cook et al 2018.pdf
	D4 HOW03 Appendix 25 Parry 2015.pdf

Dear Kay, K-J

Please find attached the 6th instalment of documents.

Best regards, Dr Dominika Chalder PIEMA Environment and Consent Manager

Environmental Management UK | Wind Power 5 Howick Place | London | SW1P 1WG

Orsted

Please consider the environment before printing this e-mail

This communication contains information which is confidential and is for the exclusive use of the addressee(s).

If you are not a named addressee, please inform the sender immediately and also delete the communication from your system.

Orsted Power (UK) Limited is registered in England Registered number: 04984787 Registered Address: 5 Howick Place, London, SW1P 1WG The Company is a wholly owned subsidiary of Orsted A/S (a company registered in Denmark) More information on the business of the Orsted group can be found at <u>www.orsted.com</u> Disclaimer version 1.1

This email has been scanned by the Symantec Email Security.cloud service. For more information please visit http://www.symanteccloud.com

Hornsea Project Three Offshore Wind Farm

Appendix 24 to Deadline 4 Submission – Cook et al., 2018

Date: 15th January 2019

Document Control				
Document Pr	Document Properties			
Organisation	Ørsted Horns	sea Project Three	9	
Author	Cook et al., 2	2018		
Checked by	n/a			
Approved by	n/a			
Title	Appendix 24 – Cool	to Deadline 4 Sι < et al., 2018	ubmission	
PINS Document Number	n/a			
Version History				
Date	Version	Status	Description / Changes	
15/01/2019	А	Final	Submitted at Deadline 4 (15/01/2019)	

Ørsted

5 Howick Place,

London, SW1P 1WG

© Orsted Power (UK) Ltd, 2019. All rights reserved

Front cover picture: Kite surfer near a UK offshore wind farm © Ørsted Hornsea Project Three (UK) Ltd., 2019.

Accepted Manuscript

Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps

Aonghais S.C.P. Cook, Elizabeth M. Humphreys, Finlay Bennet, Elizabeth A. Masden, Niall H.K. Burton

PII: S0141-1136(18)30179-X

DOI: 10.1016/j.marenvres.2018.06.017

Reference: MERE 4553

To appear in: Marine Environmental Research

Received Date: 6 March 2018

Revised Date: 22 June 2018

Accepted Date: 24 June 2018

Please cite this article as: Cook, A.S.C.P., Humphreys, E.M., Bennet, F., Masden, E.A., Burton, N.H.K., Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps, *Marine Environmental Research* (2018), doi: 10.1016/j.marenvres.2018.06.017.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1 2	Quantifying avian avoidance of offshore wind turbines: Current evidence and key knowledge gaps
3 4	Aonghais S. C. P. Cook ^{a, *\$} , Elizabeth M. Humphreys ^{b,\$} , Finlay Bennet ^c , Elizabeth A. Masden ^d , Niall H. K. Burton ^a
5	^a British Trust for Ornithology, The Nunnery, Thetford, IP24 2PU, UK
6 7	^b British Trust for Ornithology Scotland, Biological and Environmental Science, University of Stirling, FK9 4LA, UK
8	^c Marine Scotland Science, Marine Laboratory, 375 Victoria Road, Aberdeen, AB11 9DB, UK
9 10 11	^d Environmental Research Institute, North Highland College-UHI, University of Highlands and Islands, Ormlie Road, Thurso, Caithness, KW14 7EE, UK
12	*Corresponding author: aonghais.cook@bto.org
13	^{\$} ASCPC & EMH contributed equally and should be viewed as joint first authors
14	
15	
	CERTIN

16 Abstract

- 17 The risk of collision between birds and turbines is seen as one of the key issues in the planning
- 18 process for offshore wind farms. In some cases, predictions of collision risk have led to projects
- 19 either being withdrawn from the planning process, or refused planning consent. Despite this, the
- 20 evidence base on which collision risk is assessed is extremely limited and assessments rely on
- 21 models which can be highly sensitive to assumptions, notably about bird collision avoidance
- behaviour. We present a synthesis of the current state of knowledge about collision risk and
 avoidance behaviour in seabirds. Evidence suggests species-specific responses to turbines and that
- in order to avoid collision, most birds adjust their flight paths at some distance from the turbines,
- rather than making last-second adjustments. We highlight the key gaps in knowledge and make
- 26 recommendations for future data collection.
- 27

28 Keywords

- 29 Collision Risk Model, Environmental Impact Assessment, Offshore Wind Farm, Seabirds
- 30

32 1. Introduction

33	Offshore wind energy is likely to play a key role in efforts to combat climate change through the
34	production of renewable energy (Kaldellis and Zafirakis, 2011). At present the industry is well-
35	developed in northern Europe, and is expanding globally (Breton and Moe, 2009; Snyder and Kaiser,
36	2009). However, there are concerns over the potential for offshore wind farms to negatively affect
37	wildlife, with impacts on seabirds frequently cited as a key concern (Furness et al., 2013; Garthe and
38	Ниррор, 2004).
39	
40	The main effects of offshore wind farms on seabirds are thought to be: i) collision mortality; ii)
41	displacement and attraction effects and; iii) barrier effects (Desholm and Kahlert, 2005; Everaert
42	and Stienen, 2007; Masden et al., 2009; Vanermen et al., 2015). Barrier effects occur when the wind
43	farms physically exclude birds causing extended flight journeys around the development during
44	migration or when commuting between colonies and foraging areas (Masden et al., 2010, 2009).
45	Displacement is regarded as a response that results in a functional loss of the habitat available
46	within a wind farm, as opposed to a change in flight trajectory around the wind farm (Drewitt and
47	Langston, 2006; Furness et al., 2013). Whereas attraction to wind farms is argued to be a
48	consequence of turbines serving as a platform for roosting birds or the base acting as a reef resulting
49	in an increase in food availability (Dierschke et al., 2016). Collision mortality describes birds colliding
50	with turbines and associated infrastructure and has received a significant level of attention by the
51	onshore industry as a result of well documented events (de Lucas et al., 2008; Everaert and Stienen,

52	2007; Loss, 2016; Thaxter et al., 2017a). However, the feasibility of collecting corpses or observing
53	collision events in the marine environment is challenging and, to date, only two studies have
54	reported birds colliding with offshore turbines (Desholm, 2006; Pettersson, 2005).
55	
56	In the absence of more detailed information about collision rates, Collision Risk Models (CRM) are
57	routinely used to predict the risk posed by offshore wind farms to seabird populations as part of
58	pre-construction Environmental Impact Assessments (EIAS) in Europe (e.g. Ministry of Economic
59	Affairs, 2015; NIRAS, 2015). CRMs are also being used in a range of countries where the offshore
60	wind industry is in the early stages of development including the USA (Cranmer et al., 2017; Fammler
61	and Kuris, 2010; Jenkins et al., 2018; Stumpf et al., 2011). They have also been used in a post-
62	construction context in order to quantify likely collision rates (Skov et al., 2012) and to help estimate
63	the cumulative impact of collisions at multiple offshore wind farms through extrapolation (Brabant
64	et al., 2015; Busch and Garthe, 2017). A variety of different CRMs are available, but at their core
65	most calculate the probability of a bird colliding based on the likelihood of it occupying the same
66	space as a turbine blade. The collision risk to an individual bird is then scaled up based on the
67	number of birds likely to pass through a wind farm over a given time period. The final stage is the
68	application of an avoidance rate which takes into account the proportion of birds likely to take
69	action to avoid a collision (Masden and Cook, 2016). However, outputs from CRMs are known to be
70	sensitive to assumptions made about the avoidance behaviour of the species concerned, notably
71	flight height and flight speed, which are often based on extremely limited data (Chamberlain et al.,
72	2006; Masden, 2015).

74	Whilst avoidance behaviour can be seen as a continuum over space and time, there is a need to
75	break this down into different components which correspond to how birds may respond to both the
76	wind farm and to individual turbines. Technological limitations associated with measurement have
77	also influenced the definitions but, currently avoidance behaviour is recognised at three different
78	scales (Figure 1), termed macro, meso, and micro (Cook et al., 2014). May (2015) developed a
79	framework for understanding avian avoidance based on the underlying behavioural mechanisms and
80	set out how this related to these three classifications. Macro-avoidance (avoidance of the wind farm
81	as a whole) can arise through a functional habitat loss and is observed as displacement. May (2015)
82	went on to argue that attraction could be included under the term displacement, resulting in what
83	are in effect negative avoidance rates. However macro-avoidance can also include barrier effects, a
84	type of evasive behaviour which can be classified as being impulsive or anticipatory, the latter of
85	which requires early detection or a prior experience or knowledge. Meso-avoidance is the
86	anticipatory or impulsive evasion of rows of turbines within a wind farm. Micro-avoidance reflects
87	the last-second action taken to avoid collision with the turbine blades and may be thought of as an
88	escape response (May, 2015).

- 90
- 91 **Figure 1** Different scales of avoidance behaviour in relation to an offshore wind farm, turbines
- 92 indicated by black dots. Macro-avoidance reflects birds either taking action to avoid entering, or
- 93 birds being attracted to, a wind farm, meso-avoidance reflects birds taking action to avoid individual
- turbines and micro-avoidance reflects birds taking last-second action to avoid colliding with rotor
 blades (i.e. within circles surrounding each turbine).
- 96
- 97 Collisions with turbines may not only have significant conservation implications (Everaert and
- 98 Stienen, 2007) but important economic consequences as well. In the UK, the Docking Shoal Offshore
- 99 Wind Farm was refused planning consent over the estimated numbers of Sandwich terns *Thalasseus*
- 100 sandvicensis predicted to be killed (DECC, 2012), a decision with major implications for both the
- 101 developer and regulators. Considering the respective economic and conservation concerns, it is vital
- 102 that decisions about offshore wind farms are made based on the best available evidence. Despite

103	this, there has been no clear agreement about how data describing avoidance behaviour should be
104	collected (Cook et al., 2014; May, 2015). There is a risk that this situation may lead to "decision
105	paralysis" whereby decision-making is constantly postponed whilst additional data are collected
106	(Milner-Gulland and Shea, 2017).
107	
108	Northern gannet Morus bassanus, lesser black-backed gull Larus fuscus, herring gull Larus
109	argentatus, great black-backed gull Larus marinus and black-legged kittiwake Rissa tridactyla are
110	viewed as being at a high risk of collision with offshore wind farms due to their flight altitude
111	(Furness et al., 2013; Johnston et al., 2014; Ross-Smith et al., 2016). In northern Europe, the foraging
112	ranges of these species also often overlap with the currently planned offshore wind farm
113	developments (Bradbury et al., 2014; Johnston et al., 2015; Soanes et al., 2013; Thaxter et al., 2015).
114	Here we consider what evidence currently exists to quantify avoidance behaviour for these species.
115	We then describe how these data can be best combined to calculate an overall avoidance rate
116	suitable for use in CRMs for the five key species. In so doing we present an approach which can be
117	adapted for other species and also allows for sufficient flexibility for the inclusion of future data for
118	our example species. Finally, we highlight any gaps in knowledge that we have identified as part of
119	our review.

120 2. Methods

122	We focussed our literature search on operational wind farms in northern Europe at which the five
123	key bird species were likely to occur. An online database (<u>www.4coffshore.com</u>) was used to identify
124	offshore wind farm sites, relevant developers and their environmental consultants in order to obtain
125	available reports and data. Web of Science and Google Scholar were used to search for relevant
126	peer-reviewed papers, reports, conference proceedings and book chapters relating to the impacts of
127	wind farms on the five priority species, following literature trails where appropriate. We also
128	referred to previous reviews on the topic (Marine Management Organisation, 2014;
129	Smartwind/Forewind, 2013) to ensure that all sources of primary literature had been identified.
130	Where appropriate, we also considered data relating to the five key species collected from coastal
131	sites, as currently these may reflect the best or only available data on which to base decisions
132	(potential biases are highlighted in section 4.2-Limitations).
133	
134	2.1 Macro-avoidance
135	Methodologies which have been used to look at macro-avoidance may not actually distinguish
136	between birds displaced from a wind farm and those exhibiting barrier effects since both can be
137	manifested as a decrease in the numbers of birds in flight within the wind farm area. For the
138	purposes of this review however, we considered studies according to the effect they were designed
139	to investigate. This was not considered an issue as barrier, displacement and attraction effects
140	collectively describe the overall macro-avoidance rate. The key studies included based boat or aerial
141	surveys or from counts from panoramic scans but supporting information was included from GPS
142	tracking studies or radar studies where species identification had been possible. Rates of macro-

143	avoidance were taken directly from the studies cited or calculated using model coefficients (see
144	Cook et al 2014 for more details).
145	2.2 Meso-avoidance
146	To assess evidence for meso-avoidance, we considered studies in which the distribution or
147	movement patterns of birds within a wind farm were assessed. Studies selected for inclusion in the
148	review were those which compared the distribution of bird densities or bird movements in the area
149	surrounding individual turbines to the density elsewhere within the wind farm. Surveys were carried
150	out using either visual observations or with radar in combination with visual observations to identify
151	target birds to species level.
152	2.3 Horizontal vs vertical macro- and meso-avoidance
153	We considered both macro- and meso-avoidance to have two components, a vertical component
154	and a horizontal component. For the horizontal component, we considered studies in which the
155	distribution of birds (densities) or flightpaths outside the wind farm were compared to the
156	distribution within the wind farm (macro) or with respect to turbines or turbine rows within the
157	wind farm itself (meso).
158	A significant proportion of birds are likely to fly below rotor-swept height where no turbines are
159	present (Johnston et al., 2014). Consequently, in order to estimate vertical avoidance, a comparison
160	must be made of the proportion of birds at rotor-swept height pre- and post-construction or, inside
161	and outside the wind farm. We searched for studies which met these criteria. These studies were
162	mainly derived from fairly limited visual observations collected from boats or other observation

A COEDTED MANILICODIDT

	ACCEPTED MANUSCRIPT
163	platforms. Data collected using radar were considered, but were found to be at too coarse a scale to
164	be of use.
165	2.4 Micro-avoidance
166	Studies of micro-avoidance require detailed behavioural observations of the interaction between
167	birds and turbines due to the fact that they involve last-second escape responses. Therefore, to
168	assess micro-avoidance we considered studies in which interactions between birds and turbines
169	were recorded visually by observers or remotely using radar or turbine-mounted cameras. There
170	was a lack of information which was identified for this scale however.
171	
172	2.5 Within-wind farm avoidance
173	Ideally, micro and meso avoidance could be quantified separately for each species in order to
174	generate robust estimates of avoidance behaviour. However, such data may not be available and,
175	given pressures in the decision making process, decisions often rely on the best available data
176	(Milner-Gulland and Shea, 2017). In these circumstances, it is possible to derive avoidance rates by
177	comparing recorded collision rates with estimates of bird flight activity within a wind farm (Band,
178	2012). As this approach considers all bird movements within a wind farm, it is effectively a
179	combination of both meso-avoidance and micro-avoidance although, it should be noted that it also
180	incorporates elements of bias introduced by estimates of flight activity from the model itself (Band,
181	2012). We therefore refer to avoidance rates calculated in this way as within-wind farm avoidance.

- 182 At present, technologies to record collision rates in the offshore environment are still under
- 183 development (e.g. Collier, Dirksen, and Krijgsveld 2011). Consequently, avoidance rates derived

184	using this approach rely on data from the onshore environment. However, analysis of GPS data
185	indicates that there are likely to be strong differences between flight behaviour on the coast and in
186	marine areas in comparison to the terrestrial environment (Ross-Smith et al., 2016). Consequently,
187	we limited data considered for this analysis to those collected from coastal locations, where flight
188	behaviour may be more similar to that observed offshore, although there may still be some
189	differences (Ross-Smith et al., 2016).
190	
191	Records of collisions between birds and turbines are frequently reported as a collision rate per year,
192	or a collision rate per turbine per year (Musters et al., 1996). However, in order to estimate a within-
193	wind farm avoidance rate, these data must be combined with estimates of the number of birds
194	passing through the site i.e. the flux rate. We therefore restricted our analyses to sites where
195	estimates of flight activity were also made. Due to likely seasonal and spatial patterns in flight
196	activity, analyses were restricted to sites in which collision and flight activity data were collected
197	during the same months in order to ensure that collision rates reflected seasonal patterns in flight
198	activity data. For these reasons, reported avoidance rates may not match those presented in the
199	original studies. However, we feel it is important that data across sites should be assessed in a
200	consistent way. In order to ensure transparency, Table S3 includes the data and calculations used to
201	estimate the flux rates and within-wind farm avoidance rates at each site. Within-wind farm
202	avoidance rates at each site were estimated using equation 1 (Scottish Natural Heritage, 2010).
203	Within – wind farm avoidance rate = $1 - \left(\frac{Observed Collisions}{Probability of collision \times Flux Rate}\right)$ Eq. 1

204	Probability of collision is the likelihood of the blade and bird occupying the same location in space
205	and time based on simplified geometry and is derived using the Band model (Band, 2012), assuming
206	turbine characteristics presented in Table S1 and bird behaviour and morphology presented in Table
207	S2. The probability of collision for each species at each site is given in Table S3. The flux rate is
208	estimated by calculating the number of birds expected to have passed through the wind farm per m ²
209	per hour scaled up to cover the total turbine frontal area and the total time period during which
210	corpses were collected, and corrected for the proportion of birds at collision risk height and the level
211	of nocturnal activity. The assumptions made during calculations can have a significant impact on the
212	final estimates, and we therefore include Table S3 in supplementary information which shows the
213	step by step process by which we estimated each within wind farm avoidance rate. We then used
214	ratio estimators (Cochran, 1977) to combine avoidance rates across multiple sites and the delta
215	method (Powell, 2007) to estimate the standard deviation associated with the derived avoidance
216	rates.
217	Q Y
218	2.6 Derivation of recommended total avoidance rates

Collision risk estimates are typically based on pre-construction estimates of the total number of
birds within a wind farm (Cook et al., 2014). Consequently, the avoidance rates used in collision risk
models must account for changes in the total number of birds within the wind farm between the
pre- and post-construction periods as well as any redistribution arising from behavioural responses
to turbines within the wind farm. The total avoidance rate can then be estimated by combining the
macro-, meso- and micro-avoidance rates as shown in equation 2 (Cook et al., 2014; Krijgsveld et al.,

- 225 2011), or the macro- and within wind farm-avoidance rates as shown in equation 3 (adapted from
- Equation 2).
- 227 (1 Total Avoidance Rate) = (1 Macro-Avoidance) x (1 Meso-Avoidance) x (1 Micro-Avoidance)
- 228 (Eq. 2)
- 229 (1 Total Avoidance Rate) = (1 Macro-Avoidance) x (1 Within-wind farm avoidance) (Eq. 3)
- 230 Equations 2 and 3 can accommodate situations where birds are attracted at a macro- or meso-scale.
- 231 Within these formulae, a value of 1 relates to total avoidance, a value of 0 relates to neither
- avoidance nor attraction and values less than 0 relate to attraction (i.e. -0.1 would relate to a 10%
- 233 increase), meaning the avoidance rate is reduced when birds are attracted to the wind farm or
- individual turbines.
- 235

236 3. Results

237 3.1 Macro-avoidance – barrier effects

Overall there was limited evidence of macro-avoidance as an apparent consequence of barrier 238 239 effects for the five priority species (Table 1). Systematic panoramic scans of densities of birds in 240 flight within and around the Egmond aan Zee wind farm in the Netherlands revealed a macro-241 avoidance rate of 0.64 for northern gannet (n=81) and 0.18 for gull spp combined (Krijgsveld et al., 242 2011). Using a combination of radar and laser range finders at Horns Rev, a macro-avoidance rate of 0.84 was calculated based on the numbers of tracks of migrating gannets (n=74) which did not enter 243 244 the wind farm (Skov et al., 2012). The same study also reported an avoidance rate of 0.56 for large gulls (n=84) and 0.69 for kittiwakes (n=11). An earlier study at the same wind farm reported that out 245 of 126 tracks representing 268 individual migrating gannets, none of these entered the wind farm. 246 247 For migrating gulls (herring, great black-backed, little and kittiwake, 442 tracks out of a total of 461 248 did not enter the wind farm - although as neither species or size of flock were reported, the 249 avoidance rate cannot be estimated (Petersen et al., 2006). However, in these studies data were 250 collected during the post-construction period only and caution should therefore be applied when 251 interpreting their significance in the absence of pre-development data. Furthermore, data collection 252 also tended to be focused on outside the breeding season and the extent to which this information 253 is relevant to birds when they are tied to their colonies is unclear.

254

255 3.2. Macro-avoidance – displacement

256 From studies of displacement, macro-avoidance was estimated for northern gannet using ship based 257 surveys at the Blighbank wind farm in Belgium (Vanermen et al., 2015) – a rate of 0.85 (Table 1) – 258 and at the Alpha Ventus wind farm in Germany – a rate of 0.92 –although this study was based in an 259 area where gannets densities were low (Welcker and Nehls, 2016). As before, whether these data are representative of behaviour during the breeding season is uncertain as the majority of the data 260 were from the non-breeding season(Vanermen et al., 2013). Of the remaining studies, one reported 261 displacement at two wind farms (Leopold et al., 2013) and another three reported no response of 262 northern gannet, possibly as a result of low densities of birds being present pre- and post-263 264 construction (Mendel et al., 2014; Natural Power, 2014; Petersen et al., 2006). An aerial based survey at Greater Gabbard in the UK estimated an avoidance rate of 0.95 (APEM 2014) during the 265 266 autumn passage period and based on the post construction period only. An additional study of three 267 GPS-tagged northern gannets also indicated that they avoided entering wind farms (Garthe et al., 2017). 268

269

One study reported great black-backed gulls as being attracted to offshore wind farms (Welcker and Nehls, 2016), whilst the others reported no response (i.e. no attraction to or displacement from). For lesser black-backed gulls the evidence for macro-avoidance was equivocal with studies reporting attraction, displacement and no response to the wind farms. A recent study of GPS-tagged lesser black-backed gulls suggests that while individuals may differ in their response to offshore wind farms, overall the species did not consistently exhibit displacement or attraction (Thaxter, Ross-Smith, et al. 2017). Herring gull largely showed no response to wind farms with the notable

277	exception at Blighbank and Alpha Ventus where attraction effects were reported (Vanermen et al.,
278	2015; Welcker and Nehls, 2016) possibly linked to increased roosting opportunities provided by the
279	wind farm (the same effect was observed for lesser black-backed gulls at the same site). Black-
280	legged kittiwake showed both displacement effects and no response to wind farms.
281	
282	3.3. Macro-avoidance – combining all effects
283	For the species considered in this review, there was evidence that northern gannet exhibit macro
284	avoidance. At this stage, we believe the lower of the available values, 0.64 (Krijgsveld et al., 2011), is
285	an appropriate macro-avoidance rate for northern gannet. This is based on a precautionary
286	approach given that estimates were often based on small sample sizes leading to limited power to
287	detect change combined with most data being collected outside the breeding season. In contrast,
288	based on the studies we identified, none of the gull species appear to show a consistent response to
289	wind farms. In the absence of consistent evidence, we are unable to recommend a suitable macro-
290	avoidance rate for gulls.
291	
292	3.3. Horizontal meso-avoidance

293 Meso-avoidance is likely to reflect the anticipatory or impulsive evasion of individual turbines. We 294 identified four studies in which the distribution of birds or flight paths within a wind farm were 295 quantified. Using radar, Krijgsveld *et al.* (2011) and Skov *et al.* (2012) found strong evidence of 296 horizontal meso-avoidance of individual turbines. Krijgsveld *et al.* (2011) reported that the density of

297	birds within 50m of a turbine was 66% of the density elsewhere in the wind farm. Assuming that, in
298	the absence of turbines, birds would be expected to be evenly distributed across the area of the
299	wind farm, this reflects a meso-avoidance rate of 0.34. It is likely that this figure reflects an
300	underestimate of total meso-avoidance as it is based on data collected using horizontal radar and
301	will, therefore, include birds flying above or below the turbines thus not at risk of collision. Skov <i>et</i>
302	al. (2012) found a stronger response, with none of the 408 large gulls they recorded passing within
303	50m of a turbine. However, the primary purpose of this analysis was to collect information
304	describing species flight heights rather than their proximity to turbines. Tracks from radar suggested
305	some birds may approach the turbines more closely. Using visual observations, Janoska (2012)
306	recorded only 23 out of 917 gulls passing within 75m of a turbine, reflecting a meso-avoidance rate
307	of 0.975. By contrast, also using visual observations, Everaert (2008) reported no significant
308	difference in the number of gulls passing within 100m of a turbine (or its proposed site) between
309	pre- and post-construction periods, possibly reflecting the location of the site on a flight line
310	between a roost and a foraging/loafing area. These studies suggest that gulls may have a strong
311	horizontal meso-avoidance of turbines, but that this may be site or context specific. Whilst the data
312	in the studies described above are informative, it should be noted that they are not sufficiently
313	robust to allow firm conclusions to be drawn about the likely magnitude of any meso-avoidance.
314	\mathbf{Y}
315	In addition to the studies described above, several studies reported anecdotal evidence describing

316 how the relative location of the turbines may influence the distribution of birds within a wind farm.

Petersen *et al.* (2006) provided evidence to suggest that birds may be more likely to respond to

318	turbines as the number of turbine rows they passed increased, suggesting stronger avoidance
319	towards the middle of the wind farm than at the edge. Similarly, Winkelman (1992) noted that there
320	were fewer collision victims towards the centre of a wind farm. These data suggest that the strength
321	of any horizontal meso-avoidance may vary with distance from the wind farm centre. There was also
322	evidence from three sites – Horns Rev, Alpha Ventus and Egmond aan Zee – to suggest that birds
323	respond to the operational status of turbines, with higher densities recorded when turbines were
324	not operational, although this effect may be more noticeable at night (Krijgsveld et al., 2011; Mendel
325	et al., 2014; Petersen et al., 2006; Schulz et al., 2014).
326	
327	3.4 Vertical meso-avoidance
328	We identified three sites at which the proportions of birds of different species at rotor-swept height
329	could be compared pre- and post-construction – Barrow (Barrow Offshore Wind Limited, n.d.),
330	Gunfleet Sands (GoBe Consultants Ltd., 2012; NIRAS Consulting, 2011) and Robin Rigg (Natural
331	Power, 2013) – and a fourth – Egmond aan Zee (Krijgsveld et al., 2011) – where flight heights were
332	compared inside and outside a wind farm (Table 2). Across these sites, there was no consistent
333	pattern indicating an increase or decrease in the proportion of birds at rotor-swept height in
334	response to the presence of a turbine. However, given the extremely limited evidence, no firm
335	conclusions can be drawn about the extent or direction of any vertical meso-response in any species
336	of marine birds. Furthermore, where flight heights are estimated by observers by eye, it should be
337	noted that any comparison may be confounded by the fact that heights are easier to estimate once
338	turbines have been installed as they offer fixed reference points of known height.

when when the second seco

340 3.5. Micro-avoidance

- Micro-avoidance reflects a last second action to avoid collision and, may be thought of as an escape 341 342 response (May, 2015). We identified 17 sites at which visual observations of the interactions between birds and turbines had been reported (Table 3). Over the course of these studies, only two 343 344 collision events were directly observed, the first involving a flock of four common eider Somateria 345 mollisima at a single turbine at the Utgrunden Offshore Wind Farm in Sweden and the second, a 346 passerine or bat at Nysted Offshore Wind Farm in Denmark (Desholm, 2006; Pettersson, 2005). Whilst it should be noted that collisions may have occurred between observation periods, the 347 number of birds observed interacting with turbines without colliding suggests that collisions are 348 349 likely to be rare events (Table 3). 350 351 Of the studies we identified, only six provided sufficiently detailed descriptions of birds' interactions 352 with wind turbines to characterise micro-avoidance (Table 3; Desholm 2005; Krijgsveld et al. 2011; 353 RPS 2011; Schulz et al. 2014; Thaxter, Ross-Smith, et al. 2017; Wild Frontier Ecology 2013), although 354 these reflected significant effort across multiple sites. Despite this effort, there were very few 355 records of birds flying close enough to turbines to require micro-avoidance. Indeed, Desholm (2005) 356 did not record any birds passing within 20m of a turbine. Similarly, a detailed analysis of two GPS-357 tagged Lesser Black-backed Gulls indicated that these birds significantly avoided entering the turbine 358 rotor-swept area (Thaxter, Ross-Smith, et al. 2017). Across the remaining studies only 59 birds were 359 recorded as passing close to the turbine rotor-swept area, of which 54 were recorded as taking
- action to avoid the rotor-swept area (Table 3). The data for micro-avoidance would appear to be

361	consistent with those reported above for meso-avoidance, suggesting that a last second escape
362	reflex may be required relatively rarely as, within a wind farm, avoidance behaviour is driven by a
363	high level of anticipatory or impulsive evasion. However, given the differences in the species
364	recorded interacting with turbines and the relatively low number of birds recorded, it is difficult to
365	draw firm conclusions about the extent of micro-avoidance behaviour.
366	3.6. Within-wind farm avoidance
367	We identified nine coastal sites (Table 3) from which data describing the recorded number of
368	collisions were available from the same time periods as estimates of the total number of birds
369	passing through turbine rotor-swept areas. Based on the data presented in the studies highlighted in
370	Table 3, it was possible to calculate species-specific within-wind farm avoidance rates for herring gull
371	and lesser black-backed gull, as well as rates for small gulls (e.g. black-legged kittiwake), large gulls
372	(e.g. great black-backed gull) and all gulls (Table 4) but not for northern gannet.
373	These analyses confirmed that within-wind farm avoidance rates were likely to be very high (> 0.99)
374	(Table 4). Avoidance rates were similar between species with rates of 0.9959 for herring gull and
375	0.9982 for lesser black-backed gull. We also estimated group-specific avoidance rates of 0.9921 for
376	small gulls (birds identified as little, common or black-headed gulls), 0.9956 for large gulls (those
377	identified as lesser black-backed, herring or great black-backed gull or described as large gull spp.)
378	and 0.9893 for all gulls (those identified to species level or described as large gull, small gull or gull
379	spp.).

Whilst the level of precision expressed by these values may seem excessive, it should be noted that
it is the non-avoidance rate (1-avoidance) which is incorporated in the collision risk model. When

382 presented to four decimal places, the non-avoidance rates typically had 2 significant figures (table 4), 383 which we feel reflects a reasonable level of precision. The difference between an avoidance rate of 384 0.995 and 0.9959 would result in an 18% increase in the collision rate predicted from the CRM. We 385 would also argue that this level of precision is justified given the estimated level of uncertainty 386 surrounding each value (Table 4). 387 388 3.7. Recommended total avoidance rates 389 Evidence suggests that the response of gulls to turbines at a macro scale may be highly variable. 390 Consequently, at present, we consider all gull species (including kittiwake) to have an average 391 macro-avoidance rate of zero. Few studies were available with which to draw conclusions about meso- and micro-avoidance in gulls. Consequently, the total avoidance rates for gulls can be 392 393 considered to be equal to the within-wind farm avoidance rates. However, the evidence base for 394 macro-avoidance in gulls was limited meaning it was not possible to produce robust estimates of 395 uncertainty surrounding macro-avoidance rates. Therefore, when combining macro- and within-396 wind farm avoidance rates, we are not able to give an estimate of uncertainty surrounding the total 397 avoidance rate. Additionally, given the limited evidence base for macro-avoidance, we present the 398 total avoidance rate to three, rather than four, significant figures and round down in order to be 399 precautionary. We recommend total avoidance rates of 0.998 for lesser black-backed gull and 0.995 400 for herring gull. Based on flight behaviour and morphology, we believe it is reasonable to include the 401 great black-backed gull in the large gull spp. grouping, and the black-legged kittiwake in the small

402	gull spp. grouping. We therefore recommend total avoidance rates of 0.995 and 0.992 respectively
403	for these species.
404	
405	Fewer data were available to support a total avoidance rate for northern gannet. However, given the
406	evidence of strong macro-avoidance of wind farms, it was felt that the total avoidance rate was
407	unlikely to be below that obtained for all gulls. Consequently, a rate of 0.989 is recommended for
408	northern gannet.
409	
410	4. Discussion
411	May (2015) suggests that alertness is likely to increase with decreasing distance to turbines, meaning
412	birds are more likely to take action as they get closer to a turbine. We believe our review supports
413	this hypothesis as, despite significant survey effort, we uncovered very little evidence of birds
414	approaching turbines close enough to be at risk of collision. Of those that did, a high proportion
415	were recorded taking last-second action to avoid collision, termed an escape response by May
416	(2015). In a behavioural context, this suggests that most avoidance action is likely to be caused by
417	functional habitat loss or anticipatory or impulsive evasion, rather than a last second escape reflex.
418	There was also evidence to suggest that the avoidance rate may vary in relation to both the position
419	of a turbine in an array and whether or not turbines are operational (Krijgsveld et al., 2011; Mendel
420	et al., 2014; Petersen et al., 2006; Schulz et al., 2014; Winkelman, 1992), a conclusion consistent
421	with the predictions made by May (2015). Such responses highlight the ability of some species,
422	particularly gulls, to adapt to the presence of wind turbines.

423	
424	4.1. Use of avoidance rates in collision risk models
425	Previous guidance of the use of avoidance rates in CRMs was that 0.98 should be considered the
426	default value for seabirds (Scottish Natural Heritage, 2010). Whilst significant gaps in knowledge
427	remain, this review highlights that, for the species most likely to be affected by collision, avoidance
428	rates are estimated to exceed 0.99. Whilst this may seem a trivial difference, it will result in the
429	predicted collision rate being more than halved. These avoidance rates are applicable to models
430	such as Band (2012), as well as others including the models of Tucker (1996) and Eichhorn (2012).
431	However, care must be taken when using these avoidance rates in models which account for the
432	vertical distribution of birds when estimating the probability of collision (e.g. the Extended Band
433	Model Band, 2012). Accounting for the vertical distribution of birds will reduce the number of
434	collisions predicted in the absence of avoidance as the number of birds within the central, and more
435	risky part of the rotor-swept area will be reduced (Johnston et al., 2014). Consequently, within-wind
436	farm avoidance rates suitable for use with models such as the extended Band model (Band, 2012),
437	which do account for vertical distribution, are likely to be lower than those suitable for use with
438	simpler models. At present, insufficient data are available with which to estimate robust avoidance
439	rates for use in the extended Band model for most species. However, with ongoing data collection in
440	the offshore environment, for example through the UK Offshore Renewables Joint Industry Project
441	(Davies et al., 2013), it is to be hoped that this review will help inform for the collection of
442	appropriate data in future.

444 4.2. Limitations

445	At present, our recommended avoidance rates only consider horizontal avoidance. We identified
446	some evidence suggesting birds may alter their flight altitudes when within a wind farm in order to
447	reduce collision risk (Table 2). However, this evidence was inconclusive and further studies are
448	required in order to fully understand vertical avoidance behaviour. Technological advancements, for
449	example, the availability of radar (Kunz et al., 2007; Skov et al., 2016; Ward et al., 2016) and GPS tags
450	(Corman and Garthe 2014; Garthe et al. 2017; Thaxter, Ross-Smith, et al. 2017) which can collect
451	detailed information about the movement patterns of individual birds may mean these data could
452	be collected in the near future. Combining horizontal and vertical avoidance rates in order to derive
453	a three-dimensional avoidance rate is unlikely to be straightforward as birds may employ both
454	strategies at the same time, meaning simple formulae like equation 2 are unlikely to be appropriate.
455	However, approaches such as that used with GPS tracking data by Thaxter et al. (2017) may prove
456	valuable.
457	Q Y
458	Within wind farms (i.e. at meso- and micro-scales) a lack of data from the offshore environment is an
459	issue, particularly in relation to northern gannet. Whilst data from terrestrial sites are informative
460	about how birds may interact with individual turbines, evidence suggests that flight behaviour may
461	differ between onshore and offshore environments (Corman and Garthe, 2014; Ross-Smith et al.,
462	2016) potentially affecting how birds respond to turbines and therefore avoidance rates. Whilst we
463	have attempted to minimise the impact of this by focussing on data collected from coastal locations,
464	some differences may remain, notably in relation to flight height and speed (Corman and Garthe,

465	2014; Ross-Smith et al., 2016; Spear and Ainley, 2008). Birds tend to fly higher over land than
466	offshore and, there is also a greater tendency for them to fly at altitudes within the rotor-swept area
467	of turbines in the terrestrial environment (Corman and Garthe, 2014; Ross-Smith et al., 2016). This
468	greater potential exposure to turbine blades means that collision rates in the terrestrial environment
469	may be greater than is the case offshore. Seabird flight speed can be strongly influenced by weather
470	conditions, particularly wind strength and direction (Shamoun-Baranes and van Loon, 2006; Spear
471	and Ainley, 2008), potentially affecting their manoeuvrability and ability to respond to obstacles. As
472	wind conditions can differ markedly between the onshore and offshore environments, this is likely
473	to have implications for collision risk. However, at present insufficient data are available to enable us
474	to understand in which direction this may influence collision risk.
475	
476	The within-wind farm avoidance rates presented here are higher than those derived by Everaert

477 (2014). This may partly reflect the broader range of sites covered by our review, especially as some 478 of the sites covered in Everaert (2014) appear to have particularly high collision rates. In particular 479 Everaert (2014) highlights the proximity of one wind farm to a breeding colony as a key reason for a 480 high collision rate. This highlights the importance of considering site-specific variation in avoidance 481 behaviour, which we have attempted to capture by estimating confidence intervals around our 482 within-wind farm avoidance rates. However, even when we estimate within-wind farm avoidance 483 rates from similar data, the values derived as part of our review differ from those presented by Everaert (2014) (Table S3). A key reason for this is that, in order to ensure data were consistent with 484 485 those collected elsewhere, we have only considered data where no spatial or temporal extrapolation

486	was required in order to combine collision and flight activity data. We recognise that there are a
487	number of ways in which avoidance rates can be derived, and that small differences in the way some
488	parameters are derived (i.e. passage rate), and biases due to survey technique, can strongly
489	influence the final estimated avoidance rates. This is undesirable as it can increase uncertainty in the
490	consenting process, increasing costs for those involved. For this reason, we strongly suggest that
491	authors provide detailed calculations showing how the rates presented have been estimated in
492	order to enable readers to come to an informed decision about the results (see Table S3).
493	
494	To date, there has been little consideration of factors which are likely to influence avoidance
495	behaviour and to what extent there is seasonal- or site-specific variation in the offshore context.
496	Avoidance rates for non-seabird species at onshore wind farms have been reported to vary by site
497	and even within wind farms (Garvin et al., 2011), as well as by season, whether birds are resident or
498	migrants and the relative distance to the wind farm from roost sites or nest locations (Campedelli et
499	al., 2014). It is apparent, therefore, that the magnitude of any avoidance behaviour is likely to be
500	linked to the ecological importance of a site to a species at a given point in time, and how it is being
501	used. Seabirds act as central place foragers during breeding (Stephens and Krebs, 1986; Thaxter et
502	al., 2012). This may manifest itself in spatial differences in behaviour, dependent upon whether the
503	area covered by an offshore wind farm is used for active foraging or for commuting between
504	foraging grounds and the breeding colony. Such behavioural differences may be associated with
505	varying levels of collision risk and avoidance behaviour. There may also be a temporal element to
506	avoidance behaviour. Stage-dependent changes in foraging behaviour between the incubation and

507	early chick-rearing period have explained the change in spatial overlap with offshore wind farms
508	(Thaxter et al., 2015). The presence of newly fledged birds in the population towards the end of the
509	breeding season may also affect avoidance rates as these naive individuals may unintentionally
510	engage in riskier flight behaviour (Henderson et al., 1996). Individual seabirds may also show
511	consistency in their preferred foraging areas (Irons, 1998; Soanes et al., 2013) or have limited
512	alternative habitats available. Where wind farms overlap with these preferred foraging areas,
513	displacement may be less likely and macro-avoidance rates therefore lower for these individuals.
514	These studies suggest that there are likely to be both spatial and temporal elements to avoidance
515	behaviour for seabirds, neither of which have yet been properly quantified. There is also some
516	evidence to suggest that group size and social interactions can influence the likelihood of collision
517	and hence by association, the avoidance behaviour of birds (Croft et al., 2013). Other factors which
518	influence collision risk have also been reviewed extensively (Marques et al. 2014; May et al. 2015;
519	Thaxter, Buchanan, et al. 2017; Wang et al. 2015) and include aspects of: species characteristics
520	(morphology, flight behaviour, sensory perception, phenology); site features (landscape, food
521	availability, weather); and wind farm features (type of turbines and design of array).
522	
523	4.3. Future data collection — displacement and functional habitat loss
524	Whilst this study has advanced our understanding of avoidance behaviour of seabirds in relation to
525	offshore wind farms, a number of significant gaps in knowledge remain. Collecting the data
526	necessary to quantify avoidance behaviour in relation to offshore wind farms can be extremely
527	costly and therefore requires well designed studies involving both industry and regulators (e.g.

528	Davies et al. 2013). The cost and challenging nature of these studies means that it is important to
529	utilise robust analytical approaches that make the most of any data collected.
530	
531	Studies of displacement/attraction have typically used Before-After-Control-Impact (BACI) survey
532	design (Stewart-Oaten et al., 1986) but have been hampered by inadequate survey design notably
533	gaps in spatial or temporal coverage and inappropriate choice of control sites (Marine Management
534	Organisation, 2014). Recently developed approaches, such as Before-After-Gradient (BAG) analyses
535	are increasingly used to assess the impacts of wind farms with the focus on collecting data over
536	much more extensive areas around the wind farm site starting in the pre-construction period
537	(Jackson and Whitfield, 2011; Mackenzie et al., 2013; Marine Management Organisation, 2014; May,
538	2015). By incorporating environmental covariates (e.g. sea surface temperature, tidal cycles) to help
539	describe spatial and temporal variation in seabird distributions and abundance at sea, further
540	changes associated with the construction and operation of wind farms can be more accurately
541	attributed (Mackenzie et al., 2013), and therefore better inform macro-avoidance rates. Species
542	assumed to be at risk of displacement (Furness et al., 2013), tend to have estimates of avoidance
543	based largely on data collected at the macro-scale. In the case of species for which displacement is
544	not perceived to be a significant issue, for example gulls, there is often less focus on data collection
545	at this scale, meaning the macro level response to wind farms is often less well understood. By
546	focussing data collection on the scale perceived to be most relevant for the species concerned, there
547	is a risk that avoidance behaviour at other spatial scales is overlooked. Whilst this is primarily an

548	issue for data collected using observational surveys, it may also be an issue for data collected using
549	radar depending on the range over which the system operates.

551	To help to provide a better evidence base for macro-avoidance, future analyses should distinguish
552	between birds in flight and those on the water, as only those in flight are at risk of collision. Ideally,
553	such studies should also incorporate measurements of flight altitude so that birds flying above, or
554	below, the collision risk window can be excluded from subsequent analyses. However, in collecting
555	these data a key consideration needs to be whether the survey has sufficient power to detect
556	change between the pre- and post-construction periods. The power to detect change is related to a
557	variety of factors including the frequency of, and area covered by, the surveys as well as inherent
558	spatial and temporal variability in seabird distribution and relative abundance (Maclean et al., 2013;
559	Pérez Lapeña et al., 2010). This is a particular issue where the pre-construction population of a
560	species is small, and is always likely to be an issue where baseline sampling has not taken account of
561	statistical power for detection of change. This exacerbates the risks of a change in the number of
562	birds using a site either giving the false impression of a significant effect (false positive response) or
563	where no change is found, the results are wrongly interpreted as a lack of response to the presence
564	of the wind farm by the particular species (false negative response). A recent review (Marine
565	Management Organisation, 2014) of post-consent monitoring of offshore wind farms concludes that
566	the power to detect such changes by existing studies is likely to be low and the responses of seabirds
567	to wind farms may have been incorrectly quantified. Careful consideration must also be given to
568	biases associated with survey methodology. In particular, data collected from different platforms

569	(e.g. visual aerial surveys vs digital aerial surveys) can give very different estimates of abundance
570	(Buckland et al., 2012). Consequently, when estimating macro-avoidance based on displacement as
571	functional habitat loss, it is important to ensure that the data used to do so are directly comparable.
572	
573	Ideally, the effect size and associated confidence intervals should always be reported as standard in
574	the results of ecological studies (Masden et al., 2015; Nakagawa and Cuthill, 2007). However, of the
575	studies we considered, only Vanermen et al. (2015) and Natural Power (2014) did so in respect to
576	the studies of displacement and attraction. If these practices were adopted as standard when
577	measuring avoidance behaviour, not only would it make it more straightforward to quantify
578	avoidance rates and compare across studies, it would also give us an understanding of the
579	uncertainty and variability surrounding these rates.
580	
581	4.4. Future data collection — anticipatory or impulsive evasion
582	Radar can be deployed in order to investigate anticipatory or impulsive evasion of wind farms or
583	turbines. However, deriving species-specific avoidance rates from data collected in this way can be
584	challenging given the difficulty of identifying species from radar tracks. Where species-specific
585	macro-avoidance rates have been derived using radar, this has been possible because the majority
586	of tracks could be assigned to a single species (e.g. during mass migration events when only a few
587	species are represented; Desholm and Kahlert, 2005; Petersen et al., 2006). However, recent studies
588	have demonstrated effective use of radar monitoring in combination with visual observations in
589	order to be able to identify more complex suites of species moving in and around wind farms (Skov

- et al., 2012). Ideally these studies should also aim to collect data on the vertical distribution of birds
- and in-flight changes in behaviour (e.g. flight speed and turning angles).
- 592
- 593 4.5. Future data collection escape response
- 594 In order to collect data describing micro-avoidance, carefully designed experiments and analyses are
- required. Approaches such as the use of turbine mounted cameras (Desholm, 2005) may be suitable,
- 596 but must be capable of detecting abrupt changes in flight direction and/or altitude. Given that
- 597 micro-avoidance behaviour is likely to be an extremely rare event, careful consideration must be
- 598 given to ensure that any methods used have the necessary statistical power to estimate robust
- 599 avoidance rates.
- 600

601 5. Conclusions

602 Our study assesses the evidence for avoidance behaviour in five key seabird species, perceived to be

- at particular risk of collision, at three different spatial scales. We have demonstrated how the
- different types of data which have been collected fit within the framework for describing avoidance
- 605 behaviour developed by May (2015). Whilst we have done this in the context of offshore wind farms,
- this approach is also likely to be applicable to other situations where collision risk is likely to be an
- 607 issue, for example in relation to tidal turbines.

609	Lack of data on avoidance behaviour has been acknowledged as an issue for some time
610	(Chamberlain et al., 2006). As the wind industry has developed both onshore and offshore, the
611	evidence base has developed. This review summarises the evidence that has been collected to date
612	and represents a significant step forward by presenting estimates of avoidance behaviour for five
613	seabird species. It is important to acknowledge that these values are largely based on data from
614	coastal, rather than offshore locations. However, in our opinion, this remains the best available
615	evidence with which to quantify avoidance behaviour in seabirds. Significant knowledge gaps remain
616	and key areas to be addressed include distinguishing between vertical and horizontal avoidance and
617	gaining a better understanding of how seasonal and spatial processes may influence avoidance
618	behaviour. This is particularly important given the rapid growth of the offshore wind sector and the
619	potential for the cumulative impacts of collisions from multiple wind farms on species and
620	populations of concern (Brabant et al., 2015; Busch and Garthe, 2017).
621	
622	Acknowledgments

This project was carried out under contract to Marine Scotland Science. Robert Yaxley (Wild Frontier
Ecology), Steve Percival (Ecology Consulting) and Lyndon Roberts (The Landmark Practice) provided
access to relevant post construction monitoring reports. Joris Everaert, Nicholas Vanermen (INBO) ,
Mark Collier and Karen Krijgsveld (Bureau Waardenburg) all contributed valuable discussion about
the implications of data presented in reports from Dutch and Belgian wind farms. Joris Everaert also
provided access to additional data from the Zeebrugge and Boudwijnkanaal wind farms. Jared
Wilson, Ian Davies (Marine Scotland), Alex Robbins (Scottish Natural Heritage), Richard Caldow, Mel

Kershaw, Tim Frayling (Natural England), Matty Murphy (Natural Resources Wales), Orea Anderson,
Vicki Saint (JNCC), Chris Pendlebury (Natural Power Ltd), Aly McCluskie (RSPB) and Mark Trinder
(MacArthur Green) all provided useful input through the project steering group and gave extensive
comments on previous drafts. We are particularly grateful to Bill Band for his comments on data and
analyses. Finally, we thank Roel May and two anonymous reviewers whose comments have
improved this manuscript.

637 References

638 639 APEM Ltd., 2014. ASSESSING NORTHERN GANNET AVOIDANCE OF OFFSHORE WINDFARMS. 640 Cambridge. Band, B., 2012. USING A COLLISION RISK MODEL TO ASSESS BIRD COLLISION RISKS FOR OFFSHORE 641 642 WINDFARMS. 643 Barrow Offshore Wind Limited, n.d. Post Construction Ornithological Monitoring - Third Year Report 644 and Overall Conclusions. 645 Brabant, R., Vanermen, N., Stienen, E.W.M., Degraer, S., 2015. Towards a cumulative collision risk 646 assessment of local and migrating birds in North Sea offshore wind farms. Hydrobiologia 756, 647 63-74. https://doi.org/10.1007/s10750-015-2224-2 648 Bradbury, G., Trinder, M., Furness, B., Banks, A.N., Caldow, R.W.G., Hume, D., 2014. Mapping Seabird 649 Sensitivity to offshore wind farms. PLoS One 9. https://doi.org/10.1371/journal.pone.0106366 650 Breton, S., Moe, G., 2009. Status, plans and technologies for offshore wind turbines in Europe and 651 North America. Renew. Energy 34, 646–654. https://doi.org/10.1016/J.RENENE.2008.05.040 652 Buckland, S.T., Burt, M.L., Rexstad, E.A., Mellor, M., Williams, A.E., Woodward, R., 2012. Aerial 653 surveys of seabirds: the advent of digital methods. J. Appl. Ecol. 49, 960–967. https://doi.org/10.1111/j.1365-2664.2012.02150.x 654 655 Busch, M., Garthe, S., 2017. Looking at the bigger picture: the importance of considering annual 656 cycles in impact assessments illustrated in a migratory seabird species. ICES J. Mar. Sci. 657 https://doi.org/10.1093/icesjms/fsx170 Campedelli, T., Londi, G., Cutini, S., Sorace, A., Tellini Florenzano, G., 2014. Raptor displacement due 658 659 to the construction of a wind farm: preliminary results after the first 2 years since the 660 construction. Ethol. Ecol. Evol. 26, 376–391. https://doi.org/10.1080/03949370.2013.862305 661 Chamberlain, D.E., Rehfisch, M.R., Fox, A.D., Desholm, M., Anthony, S.J., 2006. The effect of 662 avoidance rates on bird mortality predictions made by wind turbine collision risk models. Ibis (Lond. 1859). 148, 198–202. https://doi.org/10.1111/j.1474-919X.2006.00507.x 663 Cochran, W.G., 1977. Sampling Techniques. John Wiley, New York. 664 Collier, M.P., Dirksen, S., Krijgsveld, K.L., 2011. A review of methods to monitor collisions or micro-665 avoidance of birds with offshore wind turbines. Culemborg. 666 667 Cook, A.S.C.P., Humphreys, E.M., Masden, E.A., Burton, N.H.K., 2014. The Avoidance Rates of 668 Collision Between Birds and Offshore Turbines. Edinburgh. Corman, A.M., Garthe, S., 2014. What flight heights tell us about foraging and potential conflicts with 669 670 wind farms: a case study in Lesser Black-backed Gulls (Larus fuscus). J. Ornithol. 1037–1043. 671 https://doi.org/10.1007/s10336-014-1094-0 Cranmer, A., Smetzer, J.R., Welch, L., Baker, E., 2017. A Markov model for planning and permitting 672 offshore wind energy: A case study of radio-tracked terns in the Gulf of Maine, USA. J. Environ. 673 674 Manage. 193, 400-409. https://doi.org/10.1016/J.JENVMAN.2017.02.010 Croft, S., Budgey, R., Pitchford, J.W., Wood, A.J., 2013. The influence of group size and social 675 676 interactions on collision risk with obstacles. Ecol. Complex. 16, 77-82. 677 https://doi.org/10.1016/J.ECOCOM.2012.06.002 Davies, I., Finlay, A., Cole, E., Alcock, P., 2013. Avoidance behaviour at offshore wind farms: a new 678 679 joint industry approach. 680 de Lucas, M., Janss, G.F.E., Whitfield, D.P., Ferrer, M., 2008. Collision fatality of raptors in wind farms 681 does not depend on raptor abundance. J. Appl. Ecol. 45, 1695–1703. https://doi.org/10.1111/j.1365-2664.2008.01549.x 682 683 DECC, 2012. Decision letter in relation to Docking Shoal Offshore Wind Farm. [WWW Document]. URL https://www.og.decc.gov.uk/EIP/pages/projects/DockingDecision.pdf (accessed 9.18.17). 684

685 Desholm, M., 2006. Wind farm related mortality among avian migrants - a remote sensing study and 686 model analysis. University of Copenhagen. Desholm, M., 2005. Preliminary investigations of bird-turbine collisions at Nysted offshore wind farm 687 688 and final quality control of Thermal Animal Detection System (TADS). Denmark. Desholm, M., Kahlert, J., 2005. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296-8. 689 690 https://doi.org/10.1098/rsbl.2005.0336 691 Dierschke, V., Furness, R.W., Garthe, S., 2016. Seabirds and offshore wind farms in European waters: 692 Avoidance and attraction. Biol. Conserv. 202, 59–68. 693 https://doi.org/10.1016/J.BIOCON.2016.08.016 Drewitt, A.L., Langston, R.H.W., 2006. Assessing the impacts of wind farms on birds. Ibis (Lond. 694 695 1859). 148, 29-42. https://doi.org/10.1111/j.1474-919X.2006.00516.x 696 Dulac, P., 2008. Evaluation de l'impact du parc eolian de Bouin (Vendee) sur l'avifaune et les 697 chauves-souris. Bilan de 5 anness de suivi. Nantes. Eichhorn, M., Johst, K., Seppelt, R., Drechsler, M., 2012. Model-Based Estimation of Collision Risks of 698 699 Predatory Birds with Wind Turbines. Ecol. Soc. 17, art1. https://doi.org/10.5751/ES-04594-700 170201 701 Everaert, J., 2014. Collision risk and micro-avoidance rates of birds with wind turbines in Flanders. 702 Bird Study 61, 220–230. https://doi.org/10.1080/00063657.2014.894492 703 Everaert, J., 2008. Effecten van windturbines op de fauna in Vlaanderen. Onderzoeks resultaten, 704 discussie en aanbevelingen. Rapporten van het Instituut voor Natuur- en Bosonderzoek, 705 Brussels. Brussels. 706 Everaert, J., Stienen, E.W.M., 2007. Impact of wind turbines on birds in Zeebrugge (Belgium). 707 Biodivers. Conserv. 16, 3345–3359. https://doi.org/10.1007/978-1-4020-6865-2_8 708 Fammler, H., Kuris, M., 2010. Concept development for an environmental impact assessment for 709 offshore wind parks in the Baltic States. Dessau-Roslau. 710 Furness, R.W., Wade, H.M., Masden, E.A., 2013. Assessing vulnerability of marine bird populations to 711 offshore wind farms. J. Environ. Manage. 119, 56–66. 712 https://doi.org/10.1016/j.jenvman.2013.01.025 Garthe, S., Huppop, O., 2004. Scaling possible adverse effects of marine wind farms on seabirds: 713 714 Developing and applying a vulnerability index. J. Appl. Ecol. 41, 724–734. 715 https://doi.org/10.1111/j.0021-8901.2004.00918.x 716 Garthe, S., Markones, N., Corman, A.-M., 2017. Possible impacts of offshore wind farms on seabirds: a pilot study in Northern Gannets in the southern North Sea. J. Ornithol. 158, 345–349. 717 718 https://doi.org/10.1007/s10336-016-1402-y 719 Garvin, J.C., Jennelle, C.S., Drake, D., Grodsky, S.M., 2011. Response of raptors to a windfarm. J. 720 Appl. Ecol. 48, 199–209. https://doi.org/10.1111/j.1365-2664.2010.01912.x 721 GoBe Consultants Ltd., 2012. GUNFLEET SANDS OFFSHORE WIND FARM I & II - Post Construction 722 Year 2 - Marine Licence Environmental Monitoring Report. 723 Henderson, I.G., Langston, R.H.W., Clark, N.A., 1996. The response of common terns Sterna hirundo 724 to power lines: An assessment of risk in relation to breeding commitment, age and wind speed. 725 Biol. Conserv. 77, 185–192. https://doi.org/10.1016/0006-3207(95)00144-1 Irons, D.B., 1998. FORAGING AREA FIDELITY OF INDIVIDUAL SEABIRDS IN RELATION TO TIDAL CYCLES 726 AND FLOCK FEEDING. Ecology 79, 647-655. https://doi.org/10.1890/0012-727 728 9658(1998)079[0647:FAFOIS]2.0.CO;2 Jackson, D., Whitfield, P., 2011. Guidance on survey and monitoring in relatin to marine renewables 729 730 deployments in Scotland, volume 4. Birds. 731 Janoska, F.J., 2012. Investigations of Bird Collisions in 2 Wind Farms, in: International Scientific 732 Conference on Sustainable Development & Ecological Footprint. Sopron, Hungary.

733	Jenkins, A.R., Reid, T., du Plessis, J., Colyn, R., Benn, G., Millikin, R., 2018. Combining radar and direct
734	observation to estimate pelican collision risk at a proposed wind farm on the Cape west coast,
735	South Africa. PLoS One 13, e0192515. https://doi.org/10.1371/journal.pone.0192515
736	Johnston, A., Cook, A.S.C.P., Wright, L.J., Humphreys, E.M., Burton, N.H.K., 2014. Modelling flight
737	heights of marine birds to more accurately assess collision risk with offshore wind turbines. J.
738	Appl. Ecol. 51, 31–41. https://doi.org/10.1111/1365-2664.12191
739	Johnston, A., Thaxter, C.B., Austin, G.E., Cook, A.S.C.P., Humphreys, E.M., Still, D.A., Mackay, A.,
740	Irvine, R., Webb, A., Burton, N.H.K., 2015. Modelling the abundance and distribution of marine
741	birds accounting for uncertain species identification. J. Appl. Ecol. 52, 150–160.
742	https://doi.org/10.1111/1365-2664.12364
743	Kaldellis, J.K., Zafirakis, D., 2011. The wind energy (r)evolution: A short review of a long history.
744	Renew. Energy 36, 1887–1901. https://doi.org/10.1016/J.RENENE.2011.01.002
745	Krijgsveld, K.L., Fijn, R.C., Japink, M., Van Horssen, P.W., Heunks, C., Collier, M.P., Poot, M.J.M.,
746	Beuker, D., Dirksen, S., 2011. Effect studies Offshore Wind Farm Egmond aan Zee.
747	Kunz, T.H., Arnett, E.B., Cooper, B.M., Erickson, W.P., Larkin, R.P., Mabee, T., Morrison, M.L.,
748	Strickland, M.D., Szewczak, J.M., 2007. Assessing Impacts of Wind-Energy Development on
749	Nocturnally Active Birds and Bats: A Guidance Document. J. Wildl. Manage. 71, 2449–2486.
750	https://doi.org/10.2193/2007-270
751	Leopold, M.F., van Bemmelen, R., Zuur, A., 2013. Responses of Local Birds to the Offshore Wind
752	Farms PAWP and OWEZ off the Dutch mainland coast. Wageningen.
753 754	Loss, S.R., 2016. Avian interactions with energy infrastructure in the context of other anthropogenic threats. Condor 118, 424–432. https://doi.org/10.1650/CONDOR-16-12.1
755	Mackenzie, M.L., Scott-Hayward, L.A., Oedekoven, C.S., Skov, H., Humphreys, E., Rexstad, E., 2013.
756	Statistical Modelling of Seabird and Cetacean data: Guidance Document. University of St.
757	Andrews contract for Marine Scotland; SB9 (CR/2012/05) 9, 195.
758 759 760	Maclean, I.M.D., Rehfisch, M.M., Skov, H., Thaxter, C.B., 2013. Evaluating the statistical power of detecting changes in the abundance of seabirds at sea. Ibis (Lond. 1859). 155, 113–126. https://doi.org/10.1111/j.1474-919X.2012.01272.x
761 762	Marine Management Organisation, 2014. Review of post-consent offshore wind farm monitoring data associated with licence conditions.
763	Marques, A.T., Batalha, H., Rodrigues, S., Costa, H., Pereira, M.J.R., Fonseca, C., Mascarenhas, M.,
764	Bernardino, J., 2014. Understanding bird collisions at wind farms: An updated review on the
765	causes and possible mitigation strategies. Biol. Conserv.
766	https://doi.org/10.1016/j.biocon.2014.08.017
767 768	Masden, E.A., 2015. Developing an avian collision risk model to incorporate variability and uncertainty. Edinburgh.
769	Masden, E.A., Cook, A.S.C.P., 2016. Avian collision risk models for wind energy impact assessments.
770	Environ. Impact Assess. Rev. 56, 43–49. https://doi.org/10.1016/j.eiar.2015.09.001
771	Masden, E.A., Haydon, D.T., Fox, A.D., Furness, R.W., 2010. Barriers to movement: Modelling
772	energetic costs of avoiding marine wind farms amongst breeding seabirds. Mar. Pollut. Bull. 60,
773	1085–1091. https://doi.org/10.1016/J.MARPOLBUL.2010.01.016
774	Masden, E.A., Haydon, D.T., Fox, A.D., Furness, R.W., Bullman, R., Desholm, M., 2009. Barriers to
775	movement: impacts of wind farms on migrating birds. ICES J. Mar. Sci. 66, 746–753.
776	https://doi.org/10.1093/icesjms/fsp031
777 778 779	Masden, E.A., McCluskie, A., Owen, E., Langston, R.H.W., 2015. Renewable energy developments in an uncertain world: The case of offshore wind and birds in the UK. Mar. Policy 51, 169–172. https://doi.org/10.1016/j.marpol.2014.08.006
780 781	May, R., Reitan, O., Bevanger, K., Lorentsen, SH., Nygard, T., 2015. Mitigating wind-turbine induced avian mortality: Sensory, aerodynamic and cognitive constraints and options. Renew. Sustain.

782	Energy Rev. 42, 170–181. https://doi.org/10.1016/J.RSER.2014.10.002
783 784	May, R.F., 2015. A unifying framework for the underlying mechanisms of avian avoidance of wind turbines. Biol. Conserv. 190, 179–187. https://doi.org/10.1016/J.BIOCON.2015.06.004
785	Mendel, B., Kotzerka, J., Sommerfeld, J., Schwemmer, H., Sonntag, N., Garthe, S., 2014. Effects of the
786	alpha ventus offshore test site on distribution patterns, behaviour and flight heights of
787	seabirds, in: Federal Maritime and Hydrographic Agency, Federal Ministry for the Environment
788	Nature Conservation and Nuclear Safety (Eds.), Ecological Research at the Offshore Wind Farm
789	Alpha Ventus: Challenges, Results and Perspectives. Springer Spektrum.
790 701	Milner-Gulland, E.J., Shea, K., 2017. Embracing uncertainty in applied ecology. J. Appl. Ecol.
791	Ministry of Fean artic Affeire 2015. Framework for accessing acalerical and surrulative offects of
792 793	offshore wind farms. Part A: Methods.
794	Musters, C.J.M., Noordervliet, M. a W., Keurs, W.J.T., 1996. Bird casualties caused by a wind energy
795	project in an estuary. Bird Study 43, 124–126. https://doi.org/10.1080/00063659609461003
796	Nakagawa, S., Cuthill, I.C., 2007. Effect size, confidence interval and statistical significance: a
797	practical guide for biologists. Biol. Rev. 82, 591–605. https://doi.org/10.1111/j.1469-
798	185X.2007.00027.x
799 800	Natural Power, 2014. Analysis of Marine Environmental Monitoring Plan Data from the Robin Rigg Offshore Wind Farm, Scotland (Post-construction Year 3).
801	Natural Power, 2013, Analysis of Marine Environmental Monitoring Plan Data from the Robin Rigg
802	Offshore Wind Farm, Scotland (Operational Year 1) 44, 210.
803	Newton, I., Little, B., 2009, Assessment of wind-farm and other bird casualties from carcasses found
804	on a Northumbrian beach over an 11-year period. Bird Study 56, 158–167.
805	https://doi.org/10.1080/00063650902787767
806	NIRAS, 2015. Vesterhav Syd Offshore Wind Farm EIA - background report migrating birds and bats.
807	Aarhus.
808	NIRAS Consulting, 2011. Gunfleet Sands 2 Offshroe Wind Farms. Year 1 Post-construction
809	Ornithological Monitoring. Cambridge.
810	Percival, S., n.d. Hellrigg Wind Farm: Goose Refuge Monitoring Report Winter 2011-12. Durham.
811	Percival, S., n.d. Hellrigg Wind Farm: Goose Refuge Monitoring Report Winter 2012-13. Durham.
812	Pérez Lapeña, B., Wijnberg, K.M., Hulscher, S.J.M.H., Stein, A., 2010, Environmental impact
813	assessment of offshore wind farms: a simulation-based approach. J. Appl. Ecol. 47, 1110–1118.
814	https://doi.org/10.1111/j.1365-2664.2010.01850.x
815	Petersen, I.K., Christensen, T.K., Kahlert, J., Desholm, M., Fox, A.D., 2006. Final results of bird studies
816	at the offshore wind farms at Nysted and Horns Rev, Denmark. Denmark.
817	Pettersson, J., 2005. The impact of offshore wind farms on bird life in Southern Kalmar Sound.
818	Sweden, A final report based on studies.
819	Powell, L., 2007, Approximating variance of demographic parameters using the DELTA METHOD : A
820	reference for avian biologists. Condor 109. 949–954. https://doi.org/10.1650/0010-
821	5422(2007)109[949:AVODPU]2.0.CO;2
822	Ross-Smith, V.H., Thaxter, C.B., Masden, E.A., Shamoun-Baranes, J., Burton, N.H.K., Wright, L.J.,
823	Rehfisch, M.M., Johnston, A., 2016. Modelling flight heights of lesser black-backed gulls and
824	great skuas from GPS: a Bayesian approach. J. Appl. Ecol. 53, 1676–1685.
825	https://doi.org/10.1111/1365-2664.12760
826	Rothery, P., Newton, I., Little, B., 2009. Observations of seabirds at offshore wind turbines near Blvth
827	in northeast England. Bird Study 56, 1–14. https://doi.org/10.1080/00063650802648093
828	RPS. 2011. Galloper wind farm project environmental statement - Technical Appendices ² : Appendix
	\dots

830	Schulz, A., Dittmann, T., Coppack, T., 2014. Erfassung von Ausweichbewegungen von Zugvögeln
821	mittels Papeil Ream Padar und Erfassung von Vogelkollisionen mit Hilfe des Systems VAPS
021	Costtich Network Upritage, 2010, Upp of Augidanes Potes in the SNU Mind Form Collision Disk Model
832	Scottish Natural Heritage, 2010. Use of Avoidance Rates in the SNH wind Farm Collision Risk Model.
833	Shamoun-Baranes, J., van Loon, E., 2006. Energetic influence on gull flight strategy selection. J. Exp.
834	Biol. 209, 3489–98. https://doi.org/10.1242/jeb.02385
835	Skov, H., Desholm, M., Heinänen, S., Kahlert, J.A., Laubek, B., Jensen, N.E., Žydelis, R., Jensen, B.P.,
836	2016. Patterns of migrating soaring migrants indicate attraction to marine wind farms. Biol.
837	Lett. 12, 20160804. https://doi.org/10.1098/rsbl.2016.0804
838	Skov, H., Leonhard, S.B., Heinanen, S., Zydelis, R., Jensen, N.E., Durinck, J., Johansen, T.W., Jensen,
839	B.P., Hansen, B.L., Piper, W., Gron, P.N., 2012. Horns Rev 2 Monitoring 2010-2012. Migrating
840	Birds.
841 842	Smartwind/Forewind, 2013. Review of avoidance rates in seabirds at offshore wind farms and applicability of use in the Band Collision Risk Model.
843 844 845	Snyder, B., Kaiser, M.J., 2009. A comparison of offshore wind power development in europe and the U.S.: Patterns and drivers of development. Appl. Energy 86, 1845–1856. https://doi.org/10.1016/J.APENERGY.2009.02.013
846 847 848	Soanes, L.M., Atkinson, P.W., Gauvin, R.D., Green, J.A., 2013. Individual consistency in the foraging behaviour of Northern Gannets: Implications for interactions with offshore renewable energy developments. Mar. Policy 38, 507–514. https://doi.org/10.1016/J.MARPOL.2012.08.006
849 850	Spear, L.B., Ainley, D.G., 2008. Flight speed of seabirds in relation to wind speed and direction. Ibis (Lond. 1859). 139, 234–251. https://doi.org/10.1111/j.1474-919X.1997.tb04621.x
851	Stephens, D.W., Krebs, J.R., 1986. Foraging theory. Princeton University Press.
852	Stewart-Oaten, A., Murdoch, W.W., Parker, K.R., 1986. Environmental Impact Assessment:
853	Pseudoreplication in Time? Ecology 67, 929–940. https://doi.org/10.2307/1939815
854 855 856	Stumpf, J.P., Denis, N., Hamer, T.E., Johnson, G., Verschuyl, J., 2011. Flight height distribution and collision risk of the marbled murrelet Brachyramphus Marmoratus: Methodology and preliminary results. Mar. Ornithol.
857	Thaxter, C.B., Buchanan, G.M., Carr, J., Butchart, S.H.M., Newbold, T., Green, R.E., Tobias, J.A.,
858	Foden, W.B., O'Brien, S., Pearce-Higgins, J.W., 2017a. Bird and bat species' global vulnerability
859	to collision mortality at wind farms revealed through a trait-based assessment. Proceedings.
860	Biol. Sci. 284, 20170829. https://doi.org/10.1098/rspb.2017.0829
861 862 863	Thaxter, C.B., Lascelles, B., Sugar, K., Cook, A.S.C.P., Roos, S., Bolton, M., Langston, R.H.W., Burton, N.H.K., 2012. Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected Areas. Biol. Conserv. 156, 53–61. https://doi.org/10.1016/j.biocon.2011.12.009
864	Thaxter, C.B., Ross-Smith, V.H., Bouten, W., Masden, E.A., Clark, N.A., Conway, G.J., Barber, L.,
865	Clewley, G., Burton, N.H.K., 2017b. Dodging the blades: new insights into three-dimensional
866	area use of offshore wind farms by lesser black-backed gulls Larus fuscus. Mar. Ecol. Prog. Ser.
867	https://doi.org/10.3354/meps12415
868	Thaxter, C.B., Ross-Smith, V.H., Clark, N.A., Barber, L., Clewley, G., Conway, G.J., Masden, E.A.,
869	Bouten, W., Burton, N.H.K., 2015. Measuring the interaction between Lesser Black-backed Gulls
870	and Herring Gulls from the Skokholm and Skomer SPA and Morecambe Bay SPA and Offshore
871	Wind Farm Development Sites: First Year Report. Thetford.
872 873	The Landmark Practice, 2013. Birds and wind turbines at Avonmouth Docks Year 5 Monitoring Report for Ecotricity. Bristol.
874	Tucker, V.A., 1996. A Mathematical Model of Bird Collisions With Wind Turbine Rotors. J. Sol. Energy
875	Eng. 118, 253. https://doi.org/10.1115/1.2871788
876	Vanermen, N., Onkelinx, T., Courtens, W., Van de walle, M., Verstraete, H., Stienen, E.W.M., 2015.
877	Seabird avoidance and attraction at an offshore wind farm in the Belgian part of the North Sea.
878	Hydrobiologia 756, 51–61. https://doi.org/10.1007/s10750-014-2088-x

- Vanermen, N., Stienen, E.W.M., Courtens, W., Onkelinx, T., van de Walle, M., Verstraete, H., 2013.
 Bird monitoring at offshroe wind farms in the Belgian part of the North Sea Assessing seabird
 displacement effects. Brussels.
- Wang, S., Wang, S., Smith, P., 2015. Ecological impacts of wind farms on birds: Questions,
 hypotheses, and research needs. Renew. Sustain. Energy Rev. 44, 599–607.
 https://doi.org/10.1016/J.RSER.2015.01.031
- Ward, R.M., Skov, H., Desholm, M., Ellis, I., 2016. The Offshore Renewables Joint Industry
 Programme (ORJIP) Bird Collision Avoidance Study. BOU Proc. Birds time Sp. avian Track.
 Remote Sens.
- Welcker, J., Nehls, G., 2016. Displacement of seabirds by an offshore wind farm in the North Sea.
 Mar. Ecol. Prog. Ser. 554, 173–182. https://doi.org/10.3354/meps11812
- Wild Frontier Ecology, 2013. Kessingland wind farm annual post-construction monitoring report year2. Norfolk.
- Winkelman, J.E., 1992. The impact of the Sep Wind Park near Oosterbierum (Fr.). The Netherlands,on birds, 1: Collision Victims. Arnheim.
- Zielinski, P., Bela, G., Marchlewski, A., 2012. Report on monitoring of the wind farm near
 Gnieżdżewo impact on birds (gmina Puck, pomorskie voivodeship) Autumn 2012.
- Zielinski, P., Bela, G., Marchlewski, A., 2011. Report on monitoring of the wind farm near
 Gnieżdżewo impact on birds (gmina Puck, pomorskie voivodeship) Autumn 2011.
- Zielinski, P., Bela, G., Marchlewski, A., 2010. Report on monitoring of the wind farm impact on birds
 in the vicinity of Gniezdzewo (gmina Puck, pomorskie voivodeship).
- Zielinski, P., Bela, G., Marchlewski, A., 2008. Report on monitoring of the wind farm impact on birds
 in the vicinity of Gniezdzewo (gmina Puck, pomorskie voivodeship).
- 902

904 **Table 1** Summary of key studies of barrier effects, displacement and attraction for the five priority species (B = barrier effects; D = displacement; A =

905 attraction and NR = no response). Black filled cells indicate species which were not covered by that particular study. Where given, estimated rates are either

906 those reported in the study concerned or, derived from published effect sizes.

- 909 **Table 2** Vertical meso-avoidance rates obtained for the five priority species and for birds classified as
- 910 unidentified gulls from comparisons of the number of birds at rotor height pre- and post-
- 911 construction, or the number of birds at rotor height inside and outside a wind farm. Values of 0
- 912 reflect no increase or decrease in the proportion of birds at rotor height, values >0 reflect a decrease
- 913 in the proportion of birds at rotor height (avoidance) and values <0 reflect an increase in the
- 914 proportion of birds at rotor height (attraction).

	Barrow (Barrow Offshore Wind Limited, n.d.)	Egmond aan Zee (Krijgsveld et al., 2011)	Gunfleet Sands 2010/11 (GoBe Consultants Ltd., 2012; NIRAS Consulting, 2011)	Gunfleet Sands 2011/12 (GoBe Consultants Ltd., 2012; NIRAS Consulting, 2011)	Robin Rigg (Natural Power, 2013)
Northern gannet	-0.59	0.49			
Black-legged kittiwake	-0.41	0.20	-0.47	0.05	-1.00
Lesser black- backed gull	0.72	attraction	-0.44	0.00	
Herring Gull	0.35	No change	-0.02	0.11	-8.00
Great black- backed gull	0.28	avoidance	-0.75	-0.53	-0.67
"small" gulls		-0.26			
"large" gulls		no change			
Gull <i>spp</i> .	-0.85	avoidance	-1.98	-1.13	

916 **Table 3** Data sources used to estimate micro-avoidance and within-wind farm avoidance rates for marine species. Rows in **bold** indicate sites from which

917 data were used to derive within wind farm avoidance rates.

Wind Farm (citation)	Survey Method	N Hours observations	N Turbines Covered	N Birds recorded during point counts	Reported Fatalities (N collisions directly observed)	Behavioural interactions with turbines
Alpha Ventus (Schulz et al., 2014)	Remote Camera	8741	1	241	<1 (0)	Of 14 objects reliably identified as birds, at least 12 had successfully passed through the rotor swept area of the turbine. Whilst collisions were assumed, none were directly recorded by the cameras
Avonmouth	Visual	108	3	5,616	1 (0)	
(The Landmark Practice, 2013)						
Blyth	Visual	352	2	8,534	0 (0)	
(Rothery et al., 2009)						
Blyth Harbour	Visual	93	9	791	1,410-1,838 ¹	
(Newton and Little, 2009)					(0)	
Boudwijnkanaal	Visual	34	5-7 ²	1,847	12 (0)	
(Everaert, 2014)						
Bouin	Visual	370	8	8,243	30 (0)	
(Dulac, 2008)						
De Put	Visual	18	2	54	2 (0)	
(Everaert, 2014)						
Egmond aan Zee	Visual		6	1,610	0 (0)	Of 36 birds (2 lesser black-backed gulls, 4
(Krijgsveld et al., 2011) ³						great black-backed gulls, 2 starlings, 28 skylarks) recorded within 50m of a turbine, 33 were recorded as being beyond the reach of the turbine blades
Gneizdzewo (Zielinski et al.,	Visual	620	19	4,443	1 (0)	

2012, 2011, 2010, 2008)						
Greater Gabbard	Visual	36	7	189	0 (0)	1 kittiwake no
(RPS, 2011)						manoeuvre to
						reported close
			_			evasive mano
Groettocht	Radar	39	7	6,825	5 (0)	
(Krijgsveld et al., 2011)						
Haverigg (RPS, 2011)	Visual	42	8	836	0 (0)	
Hellrigg (Percival, n.d., n.d.)	Visual	74.5	4	26,638	1 (0)	
Kessingland (Wild Frontier	Visual	36	2	3,535	3 (0)	5 black heade
Ecology, 2013)						gulls and 1 he
						evasive action
Kleine Detheuses (Eveneert	Marial	10	7	672	0 (0)	birds observe
Xielne Pathoweg (Everaert,	visual	10	/	672	0(0)	
Nysted (Desholm 2005)	Pomoto	176	1	55	0 (0)	Desnite noten
Nysted (Desholin, 2005)	Camera	470	1	35	0(0)	with turbines
						20m of a turb
Oosterbierum (Winkelman,	Radar		18	202,400	49 (0)	
1992) ³					. ,	
Walney I, Walney II, West of	GPS Tag	2112	270	2	0 (0)	2 lesser black-
Duddon Sands, Ormonde &						2.7% of their t
Barrow Offshore Wind Farms		, A				rotor swept a
(Thaxter et al., 2017b)						collided with t
Waterkaaptocht	Radar	39	8	14,430	6 (0)	
(Krijgsveld et al., 2011)						
Yttre Stengrund	Visual	219.5	5	404,146	4 (4)	
(Pettersson, 2005)		Y				
Zeebrugge (Everaert, 2014)	Visual	43.7	4	2,491	7 (0)	

1 kittiwake noted making an evasive manoeuvre to avoid collision, no other birds reported close enough to turbines to require evasive manoeuvres

5 black headed gulls, 2 lesser black-backed gulls and 1 herring gull reported taking evasive action within 50m of turbines. No birds observed colliding

Despite potential to record birds interacting with turbines, no birds were recorded within 20m of a turbine

2 lesser black-backed gulls spent 1.2% and 2.7% of their time within a 3-dimensional rotor swept area around turbines, neither collided with the blades

918 ¹Extrapolated from mean annual collision rates corrected for corpses lost at sea or undetected by observers. ² Five turbines covered in 2001, seven turbines

919 in 2005.³Total time not stated.

Table 4 Within-wind farm avoidance rates for seabirds

Species	N birds observed (N collisions recorded)	Non-avoidance rate	Within-wind farm avoidance rate (± SD)
Lesser black-backed gull	101,746 (2)	0.0018	0.9982 (±0.0005)
Herring gull	546,047 (9)	0.0041	0.9959 (±0.0006)
Small gull spp.	1,598,953 (42)	0.0079	0.9921 (± 0.0015)
Large gull spp.	639,560 (14)	0.0044	0.9956 (± 0.0004)
Gull spp.	2,567,124 (139)	0.0107	0.9893 (± 0.0008)

Highlights

- Seabird collisions with turbines are seen as a key concern for the offshore wind industry
- Understanding the extent to which seabirds avoid turbines is a key part of the impact assessment process
- We synthesise the knowledge of seabird interactions with offshore wind turbines
- We highlight that most avoidance behaviour is likely to take place away from the turbines
- We identify the key remaining gaps in knowledge and discuss the most appropriate approaches to fill these gaps

Ctritica and a second